Former-commit-id: 0d9b33e7625efe7bee422d1514d8453ff689553d
This commit is contained in:
2025-06-05 22:23:28 +08:00
parent 6f56255cbf
commit 8184179a17
3 changed files with 291 additions and 0 deletions

80
tmp.py Normal file
View File

@ -0,0 +1,80 @@
import numpy as np
class DistributionChangeDetector:
def __init__(self, baseline_windows: list[np.ndarray]):
"""
参数 baseline_windows: List of arrays代表初始稳定期的多个窗口
"""
self.baseline = self._compute_baseline(baseline_windows)
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
"""返回 (P_under30, std, mode)"""
p_under30 = np.mean(window < 30)
std = np.std(window, ddof=1)
# 快速估计众数:最大 bin 的中心
hist, bin_edges = np.histogram(window, bins=50)
max_bin_index = np.argmax(hist)
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
return p_under30, std, mode_est
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
"""
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
"""
stats = np.array([self._compute_stats(w) for w in windows])
mean = stats.mean(axis=0)
std = stats.std(axis=0) + 1e-6 # 防止除0
return mean, std
def update(self, window: np.ndarray) -> float:
"""
输入:当前窗口数据(长度 = 窗口大小)
输出:变化分数(越大表示分布越偏离基准)
"""
x = np.array(self._compute_stats(window))
mean, std = self.baseline
norm_diff = (x - mean) / std
change_score = np.linalg.norm(norm_diff)
return float(change_score)
import cv2
def gen_data():
cap = cv2.VideoCapture()
cap.open(1)
while True:
ret, frame = cap.read()
cv2.imshow("Camera Feed", frame)
if not ret:
break
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
s = hsv[:, :, 1] # 直接提取饱和度通道
s = s[s > 0] # 只保留非零饱和度值,减少噪声
yield s
if cv2.waitKey(1) & 0xFF == ord('a'):
break
gen = gen_data()
baseline_data = [gen.__next__() for _ in range(5)] # 获取10个窗口作为基线
det = DistributionChangeDetector(baseline_data)
results = []
for x in gen:
out = det.update(x)
if out is not None:
results.append(out)
# 作图查看
import matplotlib.pyplot as plt
plt.plot(results, label="ChangeScore")
plt.xlabel("Window index")
plt.ylabel("Score")
plt.title("Streaming Change Detection")
plt.legend()
plt.show()