81 lines
2.4 KiB
Python
81 lines
2.4 KiB
Python
import numpy as np
|
||
|
||
class DistributionChangeDetector:
|
||
def __init__(self, baseline_windows: list[np.ndarray]):
|
||
"""
|
||
参数 baseline_windows: List of arrays,代表初始稳定期的多个窗口
|
||
"""
|
||
self.baseline = self._compute_baseline(baseline_windows)
|
||
|
||
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
|
||
"""返回 (P_under30, std, mode)"""
|
||
p_under30 = np.mean(window < 30)
|
||
std = np.std(window, ddof=1)
|
||
|
||
# 快速估计众数:最大 bin 的中心
|
||
hist, bin_edges = np.histogram(window, bins=50)
|
||
max_bin_index = np.argmax(hist)
|
||
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
|
||
return p_under30, std, mode_est
|
||
|
||
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
|
||
"""
|
||
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
|
||
"""
|
||
stats = np.array([self._compute_stats(w) for w in windows])
|
||
mean = stats.mean(axis=0)
|
||
std = stats.std(axis=0) + 1e-6 # 防止除0
|
||
return mean, std
|
||
|
||
def update(self, window: np.ndarray) -> float:
|
||
"""
|
||
输入:当前窗口数据(长度 = 窗口大小)
|
||
输出:变化分数(越大表示分布越偏离基准)
|
||
"""
|
||
x = np.array(self._compute_stats(window))
|
||
mean, std = self.baseline
|
||
norm_diff = (x - mean) / std
|
||
change_score = np.linalg.norm(norm_diff)
|
||
return float(change_score)
|
||
|
||
|
||
import cv2
|
||
def gen_data():
|
||
cap = cv2.VideoCapture()
|
||
cap.open(1)
|
||
while True:
|
||
ret, frame = cap.read()
|
||
cv2.imshow("Camera Feed", frame)
|
||
if not ret:
|
||
break
|
||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||
s = hsv[:, :, 1] # 直接提取饱和度通道
|
||
s = s[s > 0] # 只保留非零饱和度值,减少噪声
|
||
yield s
|
||
if cv2.waitKey(1) & 0xFF == ord('a'):
|
||
break
|
||
|
||
|
||
gen = gen_data()
|
||
baseline_data = [gen.__next__() for _ in range(5)] # 获取10个窗口作为基线
|
||
|
||
det = DistributionChangeDetector(baseline_data)
|
||
|
||
|
||
|
||
results = []
|
||
for x in gen:
|
||
out = det.update(x)
|
||
if out is not None:
|
||
results.append(out)
|
||
|
||
|
||
# 作图查看
|
||
import matplotlib.pyplot as plt
|
||
plt.plot(results, label="ChangeScore")
|
||
plt.xlabel("Window index")
|
||
plt.ylabel("Score")
|
||
plt.title("Streaming Change Detection")
|
||
plt.legend()
|
||
plt.show()
|