alter
Former-commit-id: 0d9b33e7625efe7bee422d1514d8453ff689553d
This commit is contained in:
67
test.py
Normal file
67
test.py
Normal file
@ -0,0 +1,67 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from scipy.signal import find_peaks
|
||||
|
||||
cap = cv2.VideoCapture(1) # 使用摄像头0,通常更稳定
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # 降低分辨率提高处理速度
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
||||
|
||||
# 预先创建图形窗口,避免重复创建
|
||||
fig, ax = plt.subplots(figsize=(10, 4))
|
||||
plt.ion()
|
||||
ax.set_title('Saturation Channel Histogram')
|
||||
ax.set_xlabel('Saturation Value')
|
||||
ax.set_ylabel('Pixel Count')
|
||||
ax.set_xlim(0, 255)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("Failed to grab frame")
|
||||
break
|
||||
|
||||
cv2.imshow("Camera Feed", frame)
|
||||
|
||||
# 直接提取饱和度通道,避免完整HSV转换
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
s = hsv[:, :, 1]
|
||||
s = s[s > 0] # 只保留非零饱和度值,减少噪声
|
||||
# 使用更高效的直方图计算
|
||||
hist = cv2.calcHist([s], [0], None, [256], [0, 256])
|
||||
hist = hist.flatten() # 转换为一维数组
|
||||
|
||||
# 峰值检测 - 找到直方图中的峰值
|
||||
peaks, properties = find_peaks(hist,
|
||||
# height=np.max(hist) * 0.1, # 峰值高度至少是最大值的10%
|
||||
distance=5, # 峰值之间的最小距离
|
||||
prominence=np.max(hist) * 0.05) # 峰值的突出度
|
||||
|
||||
# 清除旧数据并绘制新直方图
|
||||
ax.clear()
|
||||
ax.plot(hist, 'b-', linewidth=1)
|
||||
|
||||
# 标注峰值
|
||||
if len(peaks) > 0:
|
||||
ax.text(0.5, 1.05, f'Found {len(peaks)} peaks')
|
||||
ax.plot(peaks, hist[peaks], 'ro', markersize=8, label=f'Peaks ({len(peaks)})')
|
||||
# 在峰值处添加文字标注
|
||||
for i, peak in enumerate(peaks):
|
||||
ax.annotate(f'Peak {i+1}\n({peak}, {int(hist[peak])})',
|
||||
xy=(peak, hist[peak]),
|
||||
xytext=(peak, hist[peak] + np.max(hist) * 0.1),
|
||||
ha='center', va='bottom',
|
||||
bbox=dict(boxstyle='round,pad=0.3', facecolor='yellow', alpha=0.7),
|
||||
arrowprops=dict(arrowstyle='->', color='red'))
|
||||
|
||||
|
||||
plt.draw()
|
||||
plt.pause(0.1) # 确保图形更新
|
||||
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
if key == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
plt.close('all')
|
80
tmp.py
Normal file
80
tmp.py
Normal file
@ -0,0 +1,80 @@
|
||||
import numpy as np
|
||||
|
||||
class DistributionChangeDetector:
|
||||
def __init__(self, baseline_windows: list[np.ndarray]):
|
||||
"""
|
||||
参数 baseline_windows: List of arrays,代表初始稳定期的多个窗口
|
||||
"""
|
||||
self.baseline = self._compute_baseline(baseline_windows)
|
||||
|
||||
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
|
||||
"""返回 (P_under30, std, mode)"""
|
||||
p_under30 = np.mean(window < 30)
|
||||
std = np.std(window, ddof=1)
|
||||
|
||||
# 快速估计众数:最大 bin 的中心
|
||||
hist, bin_edges = np.histogram(window, bins=50)
|
||||
max_bin_index = np.argmax(hist)
|
||||
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
|
||||
return p_under30, std, mode_est
|
||||
|
||||
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
|
||||
"""
|
||||
stats = np.array([self._compute_stats(w) for w in windows])
|
||||
mean = stats.mean(axis=0)
|
||||
std = stats.std(axis=0) + 1e-6 # 防止除0
|
||||
return mean, std
|
||||
|
||||
def update(self, window: np.ndarray) -> float:
|
||||
"""
|
||||
输入:当前窗口数据(长度 = 窗口大小)
|
||||
输出:变化分数(越大表示分布越偏离基准)
|
||||
"""
|
||||
x = np.array(self._compute_stats(window))
|
||||
mean, std = self.baseline
|
||||
norm_diff = (x - mean) / std
|
||||
change_score = np.linalg.norm(norm_diff)
|
||||
return float(change_score)
|
||||
|
||||
|
||||
import cv2
|
||||
def gen_data():
|
||||
cap = cv2.VideoCapture()
|
||||
cap.open(1)
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
cv2.imshow("Camera Feed", frame)
|
||||
if not ret:
|
||||
break
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
s = hsv[:, :, 1] # 直接提取饱和度通道
|
||||
s = s[s > 0] # 只保留非零饱和度值,减少噪声
|
||||
yield s
|
||||
if cv2.waitKey(1) & 0xFF == ord('a'):
|
||||
break
|
||||
|
||||
|
||||
gen = gen_data()
|
||||
baseline_data = [gen.__next__() for _ in range(5)] # 获取10个窗口作为基线
|
||||
|
||||
det = DistributionChangeDetector(baseline_data)
|
||||
|
||||
|
||||
|
||||
results = []
|
||||
for x in gen:
|
||||
out = det.update(x)
|
||||
if out is not None:
|
||||
results.append(out)
|
||||
|
||||
|
||||
# 作图查看
|
||||
import matplotlib.pyplot as plt
|
||||
plt.plot(results, label="ChangeScore")
|
||||
plt.xlabel("Window index")
|
||||
plt.ylabel("Score")
|
||||
plt.title("Streaming Change Detection")
|
||||
plt.legend()
|
||||
plt.show()
|
144
tmp2.py
Normal file
144
tmp2.py
Normal file
@ -0,0 +1,144 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.animation import FuncAnimation
|
||||
from collections import deque
|
||||
import threading
|
||||
import time
|
||||
|
||||
class DistributionChangeDetector:
|
||||
def __init__(self, baseline_windows: list[np.ndarray]):
|
||||
"""
|
||||
参数 baseline_windows: List of arrays,代表初始稳定期的多个窗口
|
||||
"""
|
||||
self.baseline = self._compute_baseline(baseline_windows)
|
||||
|
||||
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
|
||||
"""返回 (P_under30, std, mode)"""
|
||||
p_under30 = np.mean(window < 30)
|
||||
std = np.std(window, ddof=1)
|
||||
|
||||
# 快速估计众数:最大 bin 的中心
|
||||
hist, bin_edges = np.histogram(window, bins=50)
|
||||
max_bin_index = np.argmax(hist)
|
||||
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
|
||||
return p_under30, std, mode_est
|
||||
|
||||
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
|
||||
"""
|
||||
stats = np.array([self._compute_stats(w) for w in windows])
|
||||
mean = stats.mean(axis=0)
|
||||
std = stats.std(axis=0) + 1e-6 # 防止除0
|
||||
return mean, std
|
||||
|
||||
def update(self, window: np.ndarray) -> float:
|
||||
"""
|
||||
输入:当前窗口数据(长度 = 窗口大小)
|
||||
输出:变化分数(越大表示分布越偏离基准)
|
||||
"""
|
||||
x = np.array(self._compute_stats(window))
|
||||
mean, std = self.baseline
|
||||
norm_diff = (x - mean) / std
|
||||
change_score = np.linalg.norm(norm_diff)
|
||||
return float(change_score)
|
||||
|
||||
def hsv_score(s:np.ndarray):
|
||||
mask = s>30
|
||||
tot = len(mask)
|
||||
val = np.sum(mask)
|
||||
rate = val/tot
|
||||
return rate
|
||||
|
||||
class RealTimePlotter:
|
||||
def __init__(self, max_points=200):
|
||||
self.max_points = max_points
|
||||
self.scores = deque(maxlen=max_points)
|
||||
self.scores2 = deque(maxlen=max_points)
|
||||
self.times = deque(maxlen=max_points)
|
||||
self.start_time = time.time()
|
||||
|
||||
# 设置图形
|
||||
plt.ion() # 打开交互模式
|
||||
self.fig, (self.ax,self.ax2) = plt.subplots(1,2,figsize=(10, 6))
|
||||
self.line, = self.ax.plot([], [], 'b-', linewidth=2)
|
||||
self.line2, = self.ax2.plot([], [], 'b-', linewidth=2)
|
||||
self.ax.set_xlabel('Time (s)')
|
||||
self.ax.set_ylabel('Change Score')
|
||||
self.ax.set_title('Real-time Distribution Change Detection')
|
||||
self.ax.grid(True)
|
||||
self.ax2.grid(True)
|
||||
|
||||
def update_plot(self, score,s_score):
|
||||
current_time = time.time() - self.start_time
|
||||
self.scores.append(score)
|
||||
self.scores2.append(s_score)
|
||||
self.times.append(current_time)
|
||||
|
||||
# 更新数据
|
||||
self.line.set_data(list(self.times), list(self.scores))
|
||||
self.line2.set_data(list(self.times), list(self.scores2))
|
||||
|
||||
# 自动调整坐标轴
|
||||
if len(self.times) > 1:
|
||||
self.ax.set_xlim(min(self.times), max(self.times))
|
||||
self.ax2.set_xlim(min(self.times), max(self.times))
|
||||
self.ax.set_ylim(0,100)
|
||||
# self.ax.set_ylim(min(self.scores) * 0.95, max(self.scores) * 1.05)
|
||||
self.ax2.set_ylim(0,1)
|
||||
|
||||
# 刷新图形
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
|
||||
def gen_data():
|
||||
cap = cv2.VideoCapture(1)
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
cv2.imshow("Camera Feed", frame)
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
s = hsv[:, :, 1] # 直接提取饱和度通道
|
||||
s = s[s > 0] # 只保留非零饱和度值,减少噪声
|
||||
yield s
|
||||
if cv2.waitKey(1) & 0xFF == ord('a'):
|
||||
break
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
# 初始化数据生成器
|
||||
gen = gen_data()
|
||||
|
||||
# 获取基线数据
|
||||
print("收集基线数据...")
|
||||
baseline_data = [next(gen) for _ in range(30*5)]
|
||||
|
||||
# 初始化检测器和绘图器
|
||||
det = DistributionChangeDetector(baseline_data)
|
||||
plotter = RealTimePlotter()
|
||||
|
||||
print("开始实时检测和绘图...")
|
||||
|
||||
try:
|
||||
for x in gen:
|
||||
score = det.update(x)
|
||||
score2 = hsv_score(x)
|
||||
plotter.update_plot(score,score2)
|
||||
|
||||
# 小延时以控制更新频率
|
||||
time.sleep(0.01)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("停止检测")
|
||||
finally:
|
||||
plt.ioff() # 关闭交互模式
|
||||
plt.show() # 保持最终图形显示
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user