Former-commit-id: 0d9b33e7625efe7bee422d1514d8453ff689553d
This commit is contained in:
2025-06-05 22:23:28 +08:00
parent 6f56255cbf
commit 8184179a17
3 changed files with 291 additions and 0 deletions

67
test.py Normal file
View File

@ -0,0 +1,67 @@
import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy.signal import find_peaks
cap = cv2.VideoCapture(1) # 使用摄像头0通常更稳定
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # 降低分辨率提高处理速度
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# 预先创建图形窗口,避免重复创建
fig, ax = plt.subplots(figsize=(10, 4))
plt.ion()
ax.set_title('Saturation Channel Histogram')
ax.set_xlabel('Saturation Value')
ax.set_ylabel('Pixel Count')
ax.set_xlim(0, 255)
while True:
ret, frame = cap.read()
if not ret:
print("Failed to grab frame")
break
cv2.imshow("Camera Feed", frame)
# 直接提取饱和度通道避免完整HSV转换
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
s = hsv[:, :, 1]
s = s[s > 0] # 只保留非零饱和度值,减少噪声
# 使用更高效的直方图计算
hist = cv2.calcHist([s], [0], None, [256], [0, 256])
hist = hist.flatten() # 转换为一维数组
# 峰值检测 - 找到直方图中的峰值
peaks, properties = find_peaks(hist,
# height=np.max(hist) * 0.1, # 峰值高度至少是最大值的10%
distance=5, # 峰值之间的最小距离
prominence=np.max(hist) * 0.05) # 峰值的突出度
# 清除旧数据并绘制新直方图
ax.clear()
ax.plot(hist, 'b-', linewidth=1)
# 标注峰值
if len(peaks) > 0:
ax.text(0.5, 1.05, f'Found {len(peaks)} peaks')
ax.plot(peaks, hist[peaks], 'ro', markersize=8, label=f'Peaks ({len(peaks)})')
# 在峰值处添加文字标注
for i, peak in enumerate(peaks):
ax.annotate(f'Peak {i+1}\n({peak}, {int(hist[peak])})',
xy=(peak, hist[peak]),
xytext=(peak, hist[peak] + np.max(hist) * 0.1),
ha='center', va='bottom',
bbox=dict(boxstyle='round,pad=0.3', facecolor='yellow', alpha=0.7),
arrowprops=dict(arrowstyle='->', color='red'))
plt.draw()
plt.pause(0.1) # 确保图形更新
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
plt.close('all')

80
tmp.py Normal file
View File

@ -0,0 +1,80 @@
import numpy as np
class DistributionChangeDetector:
def __init__(self, baseline_windows: list[np.ndarray]):
"""
参数 baseline_windows: List of arrays代表初始稳定期的多个窗口
"""
self.baseline = self._compute_baseline(baseline_windows)
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
"""返回 (P_under30, std, mode)"""
p_under30 = np.mean(window < 30)
std = np.std(window, ddof=1)
# 快速估计众数:最大 bin 的中心
hist, bin_edges = np.histogram(window, bins=50)
max_bin_index = np.argmax(hist)
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
return p_under30, std, mode_est
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
"""
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
"""
stats = np.array([self._compute_stats(w) for w in windows])
mean = stats.mean(axis=0)
std = stats.std(axis=0) + 1e-6 # 防止除0
return mean, std
def update(self, window: np.ndarray) -> float:
"""
输入:当前窗口数据(长度 = 窗口大小)
输出:变化分数(越大表示分布越偏离基准)
"""
x = np.array(self._compute_stats(window))
mean, std = self.baseline
norm_diff = (x - mean) / std
change_score = np.linalg.norm(norm_diff)
return float(change_score)
import cv2
def gen_data():
cap = cv2.VideoCapture()
cap.open(1)
while True:
ret, frame = cap.read()
cv2.imshow("Camera Feed", frame)
if not ret:
break
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
s = hsv[:, :, 1] # 直接提取饱和度通道
s = s[s > 0] # 只保留非零饱和度值,减少噪声
yield s
if cv2.waitKey(1) & 0xFF == ord('a'):
break
gen = gen_data()
baseline_data = [gen.__next__() for _ in range(5)] # 获取10个窗口作为基线
det = DistributionChangeDetector(baseline_data)
results = []
for x in gen:
out = det.update(x)
if out is not None:
results.append(out)
# 作图查看
import matplotlib.pyplot as plt
plt.plot(results, label="ChangeScore")
plt.xlabel("Window index")
plt.ylabel("Score")
plt.title("Streaming Change Detection")
plt.legend()
plt.show()

144
tmp2.py Normal file
View File

@ -0,0 +1,144 @@
import numpy as np
import cv2
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from collections import deque
import threading
import time
class DistributionChangeDetector:
def __init__(self, baseline_windows: list[np.ndarray]):
"""
参数 baseline_windows: List of arrays代表初始稳定期的多个窗口
"""
self.baseline = self._compute_baseline(baseline_windows)
def _compute_stats(self, window: np.ndarray) -> tuple[float, float, float]:
"""返回 (P_under30, std, mode)"""
p_under30 = np.mean(window < 30)
std = np.std(window, ddof=1)
# 快速估计众数:最大 bin 的中心
hist, bin_edges = np.histogram(window, bins=50)
max_bin_index = np.argmax(hist)
mode_est = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
return p_under30, std, mode_est
def _compute_baseline(self, windows: list[np.ndarray]) -> tuple[np.ndarray, np.ndarray]:
"""
返回 baseline 向量 (P0, σ0, mode0) 和对应标准差(用于归一化)
"""
stats = np.array([self._compute_stats(w) for w in windows])
mean = stats.mean(axis=0)
std = stats.std(axis=0) + 1e-6 # 防止除0
return mean, std
def update(self, window: np.ndarray) -> float:
"""
输入:当前窗口数据(长度 = 窗口大小)
输出:变化分数(越大表示分布越偏离基准)
"""
x = np.array(self._compute_stats(window))
mean, std = self.baseline
norm_diff = (x - mean) / std
change_score = np.linalg.norm(norm_diff)
return float(change_score)
def hsv_score(s:np.ndarray):
mask = s>30
tot = len(mask)
val = np.sum(mask)
rate = val/tot
return rate
class RealTimePlotter:
def __init__(self, max_points=200):
self.max_points = max_points
self.scores = deque(maxlen=max_points)
self.scores2 = deque(maxlen=max_points)
self.times = deque(maxlen=max_points)
self.start_time = time.time()
# 设置图形
plt.ion() # 打开交互模式
self.fig, (self.ax,self.ax2) = plt.subplots(1,2,figsize=(10, 6))
self.line, = self.ax.plot([], [], 'b-', linewidth=2)
self.line2, = self.ax2.plot([], [], 'b-', linewidth=2)
self.ax.set_xlabel('Time (s)')
self.ax.set_ylabel('Change Score')
self.ax.set_title('Real-time Distribution Change Detection')
self.ax.grid(True)
self.ax2.grid(True)
def update_plot(self, score,s_score):
current_time = time.time() - self.start_time
self.scores.append(score)
self.scores2.append(s_score)
self.times.append(current_time)
# 更新数据
self.line.set_data(list(self.times), list(self.scores))
self.line2.set_data(list(self.times), list(self.scores2))
# 自动调整坐标轴
if len(self.times) > 1:
self.ax.set_xlim(min(self.times), max(self.times))
self.ax2.set_xlim(min(self.times), max(self.times))
self.ax.set_ylim(0,100)
# self.ax.set_ylim(min(self.scores) * 0.95, max(self.scores) * 1.05)
self.ax2.set_ylim(0,1)
# 刷新图形
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def gen_data():
cap = cv2.VideoCapture(1)
while True:
ret, frame = cap.read()
if not ret:
break
cv2.imshow("Camera Feed", frame)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
s = hsv[:, :, 1] # 直接提取饱和度通道
s = s[s > 0] # 只保留非零饱和度值,减少噪声
yield s
if cv2.waitKey(1) & 0xFF == ord('a'):
break
cap.release()
cv2.destroyAllWindows()
def main():
# 初始化数据生成器
gen = gen_data()
# 获取基线数据
print("收集基线数据...")
baseline_data = [next(gen) for _ in range(30*5)]
# 初始化检测器和绘图器
det = DistributionChangeDetector(baseline_data)
plotter = RealTimePlotter()
print("开始实时检测和绘图...")
try:
for x in gen:
score = det.update(x)
score2 = hsv_score(x)
plotter.update_plot(score,score2)
# 小延时以控制更新频率
time.sleep(0.01)
except KeyboardInterrupt:
print("停止检测")
finally:
plt.ioff() # 关闭交互模式
plt.show() # 保持最终图形显示
if __name__ == "__main__":
main()