enhance train and adapt main to train only
Former-commit-id: dd0f5b88b7a401eb41006cf357eff993ca661dd7
This commit is contained in:
@ -4,8 +4,8 @@ from pathlib import Path
|
||||
from train_2 import train_model,prepare_data,predict
|
||||
import joblib
|
||||
|
||||
inp = Path("data/train")
|
||||
val = Path("data/val")
|
||||
inp = Path("data/train_new")
|
||||
val = Path("data/val_new")
|
||||
proc = Path("data/proc")
|
||||
proc.mkdir(exist_ok=True)
|
||||
|
||||
@ -33,36 +33,37 @@ def preproc(dir:Path):
|
||||
h = round(np.sum(hsv[:,:,0])/cnt)
|
||||
s = round(np.sum(hsv[:,:,1])/cnt)
|
||||
v = round(np.sum(hsv[:,:,2])/cnt)
|
||||
name = f"{h}_{s}_{v}.jpg"
|
||||
name = f"{cl}_{h}_{s}_{v}.jpg"
|
||||
d[cl].append((h,s,v))
|
||||
# (proc/cl).mkdir(exist_ok=True)
|
||||
# cv2.imwrite(proc/cl/name,cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR))
|
||||
# cv2.imwrite(proc/name,cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR))
|
||||
return d
|
||||
|
||||
d:dict[str,list[tuple[int,int,int]]] = preproc(inp)
|
||||
# d:dict[str,list[tuple[int,int,int]]] = preproc(inp)
|
||||
val:dict[str,list[tuple[int,int,int]]] = preproc(val)
|
||||
|
||||
print("数据预处理完成")
|
||||
|
||||
model, label_map = train_model(d)
|
||||
print("训练完成")
|
||||
joblib.dump(model, "model.pkl")
|
||||
model, label_map = train_model(val)
|
||||
# print("训练完成")
|
||||
# joblib.dump(model, "model.pkl")
|
||||
|
||||
# model = joblib.load("model.pkl")
|
||||
X_train, y_train = prepare_data(d)
|
||||
print(predict(model, label_map, d))
|
||||
print(predict(model, label_map, val))
|
||||
X_train, y_train = prepare_data(val)
|
||||
rate,failed = predict(model, label_map, val)
|
||||
print(rate)
|
||||
# print(predict(model, label_map, val))
|
||||
# print(f"\n训练集准确率: {model.score(X_train, y_train):.5f}")
|
||||
# X_train, y_train = prepare_data(val)
|
||||
# print(f"\n训练集准确率: {model.score(X_train, y_train):.5f}")
|
||||
# model.predict()
|
||||
from src_predict import predictor
|
||||
suc = cnt = 0
|
||||
for file in Path("data/train").glob("*/*.jpg"):
|
||||
cnt+=1
|
||||
pcl,_=predictor(file)
|
||||
acl = file.parents[0].name
|
||||
if acl == pcl:
|
||||
suc+=1
|
||||
# from src_predict import predictor
|
||||
# suc = cnt = 0
|
||||
# for file in Path("data/val").glob("*/*.jpg"):
|
||||
# cnt+=1
|
||||
# pcl,_=predictor(file)
|
||||
# acl = file.parents[0].name
|
||||
# if acl == pcl:
|
||||
# suc+=1
|
||||
|
||||
print(f"预测准确率: {suc/cnt:.4f}")
|
||||
# print(f"预测准确率: {suc/cnt:.4f}")
|
||||
|
@ -71,7 +71,7 @@ def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarra
|
||||
返回:
|
||||
预测结果字典,格式为 dict[str, list[list[str]]],表示每个输入数组中样本的预测类别
|
||||
"""
|
||||
results = {}
|
||||
failed = []
|
||||
|
||||
suc = 0
|
||||
cnt = 0
|
||||
@ -87,14 +87,15 @@ def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarra
|
||||
# 进行预测并转换为类别名
|
||||
pred_labels = model.predict(arr)
|
||||
pred_classes = [label_map[label] for label in pred_labels]
|
||||
if len(pred_classes) > 1:continue
|
||||
if class_name==pred_classes[0]:
|
||||
if len(pred_classes) == 1 and class_name==pred_classes[0]:
|
||||
suc+=1
|
||||
else:
|
||||
failed.append(arrays_list)
|
||||
# class_predictions.append(pred_classes)
|
||||
|
||||
results[class_name] = class_predictions
|
||||
# results[class_name] = class_predictions
|
||||
|
||||
return suc/cnt
|
||||
return suc/cnt,failed
|
||||
|
||||
if __name__ == "__main__":
|
||||
exit()
|
||||
|
Reference in New Issue
Block a user