enhance train and adapt main to train only

Former-commit-id: dd0f5b88b7a401eb41006cf357eff993ca661dd7
This commit is contained in:
2025-05-17 23:46:34 +08:00
parent 8849c28c14
commit b0670fa2ca
2 changed files with 27 additions and 25 deletions

View File

@ -4,8 +4,8 @@ from pathlib import Path
from train_2 import train_model,prepare_data,predict
import joblib
inp = Path("data/train")
val = Path("data/val")
inp = Path("data/train_new")
val = Path("data/val_new")
proc = Path("data/proc")
proc.mkdir(exist_ok=True)
@ -33,36 +33,37 @@ def preproc(dir:Path):
h = round(np.sum(hsv[:,:,0])/cnt)
s = round(np.sum(hsv[:,:,1])/cnt)
v = round(np.sum(hsv[:,:,2])/cnt)
name = f"{h}_{s}_{v}.jpg"
name = f"{cl}_{h}_{s}_{v}.jpg"
d[cl].append((h,s,v))
# (proc/cl).mkdir(exist_ok=True)
# cv2.imwrite(proc/cl/name,cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR))
# cv2.imwrite(proc/name,cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR))
return d
d:dict[str,list[tuple[int,int,int]]] = preproc(inp)
# d:dict[str,list[tuple[int,int,int]]] = preproc(inp)
val:dict[str,list[tuple[int,int,int]]] = preproc(val)
print("数据预处理完成")
model, label_map = train_model(d)
print("训练完成")
joblib.dump(model, "model.pkl")
model, label_map = train_model(val)
# print("训练完成")
# joblib.dump(model, "model.pkl")
# model = joblib.load("model.pkl")
X_train, y_train = prepare_data(d)
print(predict(model, label_map, d))
print(predict(model, label_map, val))
X_train, y_train = prepare_data(val)
rate,failed = predict(model, label_map, val)
print(rate)
# print(predict(model, label_map, val))
# print(f"\n训练集准确率: {model.score(X_train, y_train):.5f}")
# X_train, y_train = prepare_data(val)
# print(f"\n训练集准确率: {model.score(X_train, y_train):.5f}")
# model.predict()
from src_predict import predictor
suc = cnt = 0
for file in Path("data/train").glob("*/*.jpg"):
cnt+=1
pcl,_=predictor(file)
acl = file.parents[0].name
if acl == pcl:
suc+=1
# from src_predict import predictor
# suc = cnt = 0
# for file in Path("data/val").glob("*/*.jpg"):
# cnt+=1
# pcl,_=predictor(file)
# acl = file.parents[0].name
# if acl == pcl:
# suc+=1
print(f"预测准确率: {suc/cnt:.4f}")
# print(f"预测准确率: {suc/cnt:.4f}")

View File

@ -71,7 +71,7 @@ def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarra
返回:
预测结果字典,格式为 dict[str, list[list[str]]],表示每个输入数组中样本的预测类别
"""
results = {}
failed = []
suc = 0
cnt = 0
@ -87,14 +87,15 @@ def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarra
# 进行预测并转换为类别名
pred_labels = model.predict(arr)
pred_classes = [label_map[label] for label in pred_labels]
if len(pred_classes) > 1:continue
if class_name==pred_classes[0]:
if len(pred_classes) == 1 and class_name==pred_classes[0]:
suc+=1
else:
failed.append(arrays_list)
# class_predictions.append(pred_classes)
results[class_name] = class_predictions
# results[class_name] = class_predictions
return suc/cnt
return suc/cnt,failed
if __name__ == "__main__":
exit()