Former-commit-id: 3aa4827fc8d838566a43ce36572a3cc975199242
This commit is contained in:
2025-05-17 23:45:58 +08:00
parent 60a1940509
commit 8849c28c14
5 changed files with 114 additions and 36 deletions

4
Auto_Ctrl/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
Input
Output
Imgs
*.jpg

3
Auto_Ctrl/model-old.pkl Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1ca6d267a1b151f02a2096b1e7fbcea8abc298b6feec224c200a8b9a81fc2fc8
size 107513

3
Auto_Ctrl/model.pkl Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1ca6d267a1b151f02a2096b1e7fbcea8abc298b6feec224c200a8b9a81fc2fc8
size 107513

View File

@ -12,10 +12,10 @@ import serial
from datetime import datetime
from scipy.optimize import curve_fit
import numpy as np
import re
import joblib
import json
import Find_COM
import builtins
from threading import Thread
class MAT:
@ -27,9 +27,9 @@ class MAT:
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.port = Find_COM.list_ch340_ports()[0] # 串口名
self.pump_ser = serial.Serial(self.port, 9600) # 初始化串口
self.usb_port = Find_COM.list_USB_ports() # 串口名
if self.usb_port:
self.usb_ser = serial.Serial(self.usb_port, 115200) # 初始化串口
# self.usb_port = Find_COM.list_USB_ports() # 串口名
# if self.usb_port:
# self.usb_ser = serial.Serial(self.usb_port, 115200) # 初始化串口
self.classes = classes
self.total_volume = 0 # 记录总体积
self.now_volume = 0 # 记录当前注射泵内体积
@ -42,6 +42,7 @@ class MAT:
# 将开始时间转化为年月日时分秒的格式,后续文件命名都已此命名
self.formatted_time = datetime.fromtimestamp(self.start_time).strftime('%Y%m%d_%H%M%S')
self.model = joblib.load("model.pkl")
print("实验开始于", self.formatted_time)
def get_picture(self, frame, typ=0, date=''): # 拍摄照片并保存
@ -166,6 +167,60 @@ class MAT:
plt.pause(1)
plt.close()
def preproc(self, im):
try:
hsv = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
mask = hsv[:,:,1] > 150
mask = mask[:,:,np.newaxis]
cnt = np.count_nonzero(mask)
hsv*=mask
h = round(np.sum(hsv[:,:,0])/cnt)
s = round(np.sum(hsv[:,:,1])/cnt)
v = round(np.sum(hsv[:,:,2])/cnt)
return h,s,v
except Exception as e :
print(e)
return None
# name = f"{cl}_{h}_{s}_{v}.jpg"
def _pred(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return None
ret = self.my_predictor(im)
if ret is None:
cv2.imwrite("tmp.jpg",im)
return self.predictor("tmp.jpg")
else:
if ret == self.end_kind:
print("Stop at ",self.total_volume)
self.running = False
self.start_move_3()
else:
self.thr = Thread(target=self._pred).start()
return ret,0.9
def my_predictor(self,im):
model = self.model
ret = self.preproc(im)
if ret is None:
return None
arr = np.array(ret)
if len(arr.shape) == 1:
arr = arr.reshape(1, -1)
# 进行预测并转换为类别名
pred_labels = model.predict(arr)
# pred_classes = [label_map[label] for label in pred_labels]
mp = ["orange", "yellow"]
if len(pred_labels) == 1:
return mp[pred_labels[0]]
else:
return None
def predictor(self, im_file): # 预测分类
image = Image.open(im_file)
data_transform = transforms.Compose([
@ -207,11 +262,24 @@ class MAT:
cv2.destroyAllWindows()
print("Experiment finished.")
def save_img(self):
suc,im = self.cap.read()
cv2.imshow("new",im)
name = f"Imgs/{self.formatted_time}_{self.total_volume}.jpg"
if not cv2.imwrite(name,im):
print("Failed to save image",name)
def run(self,quick_speed = 0.2, slow_speed = 0.05,switching_point = 5, end_kind = 'orange', end_prob =0.5):
def run(self,quick_speed = 0.2, mid_speed=0.1,slow_speed = 0.05,expect = 5, end_kind = 'orange', end_prob =0.5):
n = 1
total_n = n
while True:
# self.wait = False
self.running = True
self.end_kind = end_kind
self.cnt = 0
self.thr = Thread(target=self._pred)
self.thr.start()
switching_point = expect * 0.9
while self.running:
if self.now_volume <= 0:
self.start_move_1() # 抽取12ml
self.now_volume += 12
@ -229,44 +297,37 @@ class MAT:
self.total_volume = round(self.total_volume, 3)
# 读取图片
ret, frame = self.cap.read()
if not ret:
print("Failed to capture frame from camera.")
break
# suc,im = self.cap.read()
# cv2.imshow('Color', im)
# cv2.waitKey(1)
name = self.get_picture(frame, 0, self.formatted_time)
im_file = 'Input/' + name
cv2.imshow('Color', frame)
cv2.waitKey(1)
class_a, prob_b = self.predictor(im_file)
# class_a, prob_b = self.my_predictor(im_file)
# class_a, prob_b = self.predictor(im_file)
self.volume_list.append(self.total_volume)
self.save_img()
cv2.waitKey(1)
# 如果有电压测量设备,可以在这里读取电压
# self.voltage_list.append(self.voltage())
if class_a == end_kind and prob_b > end_prob: # 判断终点
print('----->>Visual Endpoint<<-----')
print(f"Total Volume: {self.total_volume} ml")
print(f"Image File: {im_file}")
self.color_list.append(1)
break
else:
self.color_list.append(0)
# if class_a == end_kind and prob_b > end_prob: # 判断终点
# print('----->>Visual Endpoint<<-----')
# print(f"Total Volume: {self.total_volume} ml")
# print(f"Image File: {im_file}")
# self.color_list.append(1)
# break
# else:
# self.color_list.append(0)
print(f"Current Total Volume: {self.total_volume} ml")
self.save_img()
print('----->>Visual Endpoint<<-----')
print(f"Total Volume: {self.total_volume} ml")
# print(f"Image File: {im_file}")
print("Volume List:", self.volume_list)
print("Voltage List:", self.voltage_list)
print("Color List:", self.color_list)
# 保存实验数据到JSON文件
with builtins.open(f'Output/{self.formatted_time}.json', 'w') as f:
json.dump(
{"volume_list": self.volume_list, 'voltage_list': self.voltage_list, 'color_list': self.color_list},
f)
if __name__ == "__main__":
import warnings
@ -275,6 +336,12 @@ if __name__ == "__main__":
# 创建MAT类的实例并运行
mat = MAT(videoSourceIndex = 0, weights_path = "resnet34-1Net.pth", json_path = 'class_indices.json', classes = 2)
mat.run(quick_speed = 0.2, slow_speed = 0.05, switching_point = 5, end_kind = 'orange', end_prob = 0.5)
mat.run(
quick_speed = 0.3,
slow_speed = 0.2,
expect = 11.2,
end_kind = 'orange',
end_prob = 0.5
)

1
Picture_Train/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
data