clean 3
Former-commit-id: 0d5b15c8877419ac69f03d538f8d1bf9c4e063b9
This commit is contained in:
@ -1,15 +1,11 @@
|
||||
import torch
|
||||
from PIL import Image
|
||||
import torchvision.transforms as transforms
|
||||
import cv2
|
||||
import time
|
||||
import os
|
||||
from model import resnet34
|
||||
import serial
|
||||
from datetime import datetime
|
||||
import numpy as np
|
||||
import joblib
|
||||
import json
|
||||
import Find_COM
|
||||
from threading import Thread
|
||||
import atexit
|
||||
@ -198,37 +194,6 @@ class MAT:
|
||||
else:
|
||||
return "colored"
|
||||
|
||||
def predictor(self, im_file): # 预测分类
|
||||
image = Image.open(im_file)
|
||||
data_transform = transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
img = data_transform(image)
|
||||
img = torch.unsqueeze(img, dim=0)
|
||||
with open(self.json_path, "r") as f:
|
||||
class_indict = json.load(f)
|
||||
|
||||
model = resnet34(num_classes=self.classes).to(self.device)
|
||||
|
||||
assert os.path.exists(self.weights_path), "file: '{}' dose not exist.".format(self.weights_path)
|
||||
model.load_state_dict(torch.load(self.weights_path, map_location=self.device))
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
output = torch.squeeze(model(img.to(self.device))).cpu()
|
||||
predict = torch.softmax(output, dim=0)
|
||||
predict_cla = torch.argmax(predict).numpy()
|
||||
|
||||
class_a = "{}".format(class_indict[str(predict_cla)])
|
||||
prob_a = "{:.3}".format(predict[predict_cla].numpy())
|
||||
prob_b = float(prob_a)
|
||||
print('class_:',class_a)
|
||||
print('prob_:',prob_b)
|
||||
return class_a, prob_b
|
||||
|
||||
def __del__(self):
|
||||
self.pump_ser.close()
|
||||
self.cap.release()
|
||||
|
Reference in New Issue
Block a user