Files
ai-titration/predictor_Syringe_Pump.py
flt6 7176eb7605 clean 3
Former-commit-id: 0d5b15c8877419ac69f03d538f8d1bf9c4e063b9
2025-05-26 19:19:30 +08:00

278 lines
9.1 KiB
Python

import torch
import cv2
import time
import os
import serial
from datetime import datetime
import numpy as np
import joblib
import Find_COM
from threading import Thread
import atexit
LOCAL_DEBUG = False
if LOCAL_DEBUG:
print("WARNING: Local debug mode is enabled. Serial communication will be skipped.")
time.sleep(2)
class MAT:
def __init__(self, videoSourceIndex=0, weights_path = "resnet34-1Net.pth", json_path = 'class_indices.json', classes = 2,bounce_time=1):
print('实验初始化中')
self.data_root = os.getcwd()
self.videoSourceIndex = videoSourceIndex # 摄像机编号
self.cap = cv2.VideoCapture(videoSourceIndex, cv2.CAP_DSHOW) # 打开摄像头
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not LOCAL_DEBUG:
self.port = Find_COM.list_ch340_ports()[0] # 串口名
self.pump_ser = serial.Serial(self.port, 9600) # 初始化串口
self.classes = classes
self.bounce_time = bounce_time # 防抖时间
self.total_volume = 0 # 记录总体积
self.now_volume = 0 # 记录当前注射泵内体积
self.volume_list = [] # 记录体积变化
self.color_list = [] # 记录颜色变化
self.start_time = time.time() # 记录实验开始时间
self.weights_path = os.path.join(self.data_root, weights_path) # 权重文件路径
self.json_path = os.path.join(self.data_root, json_path) # 类别文件路径
# 将开始时间转化为年月日时分秒的格式,后续文件命名都已此命名
self.formatted_time = datetime.fromtimestamp(self.start_time).strftime('%Y%m%d_%H%M%S')
self.model = joblib.load("model.pkl")
atexit.register(self.start_move_3)
print("实验开始于", self.formatted_time)
def start_move_1(self): # 抽料程序
if LOCAL_DEBUG:return
self.start_move_init()
data = b"q1h40d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q2h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h9d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q6h3d"
self.pump_ser.write(data)
time.sleep(9)
print('完成抽取')
def start_move_init(self): # init
if LOCAL_DEBUG:return
data = b"q1h15d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q2h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h2d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q6h2d"
self.pump_ser.write(data)
print("send1")
time.sleep(2)
data = b"q1h20d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h1d"
self.pump_ser.write(data)
time.sleep(0.1)
data = b"q6h3d"
self.pump_ser.write(data)
print("send2")
time.sleep(1)
print('INITED')
def start_move_2(self, speed=0.1): # 进料程序
if LOCAL_DEBUG:
time.sleep(1)
return
# 计算单次滴定体积并传输至控制器
speed_min = speed * 30
speed_min_int = int(speed_min)
speed_min_float = int((speed_min - speed_min_int) * 100)
# print(speed_min_int, speed_min_float)
data = f"q1h{speed_min_int}d"
self.pump_ser.write(data.encode('ascii'))
time.sleep(0.01)
data = f"q2h{speed_min_float}d"
self.pump_ser.write(data.encode('ascii'))
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h1d"
self.pump_ser.write(data)
time.sleep(0.01)
# 进料
data = b"q6h2d"
self.pump_ser.write(data)
time.sleep(1)
def start_move_3(self): # 进料急停
if LOCAL_DEBUG:return
data = b"q6h6d"
self.pump_ser.write(data)
def _pred(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return None
ret = self.my_predictor(im)
# print(ret)
if ret is None:
print("Fallback")
self.thr = Thread(target=self._pred).start()
else:
# fps
now = time.time()
if now - self.last[0] > 1:
print("FPS: ",self.last[1])
print(ret)
self.last[0] = now
self.last[1] = 0
else:
self.last[1] += 1
# fps end
now = time.time()
if ret == "middle":
if self.debounce[0] and self.typ == 0:
if self.debounce[1] and self.debounce[0]:
# print(self.debounce)
if now-self.debounce[0][-1] > self.bounce_time:
print("Bounce check succeeded, val:",self.debounce[1][0])
else:
print("Got middle flag, bounce check start, val:",self.total_volume)
self.typ = 1
self.start_move_3()
self.debounce[1].append((time.time(),self.total_volume))
elif ret == self.end_kind:
if self.debounce[1]:
print("Got stop flag, val:",self.total_volume)
self.running = False
self.start_move_3()
return
else:
if self.debounce[0]:
# print(self.debounce)
if self.debounce[1]:
# print(self.debounce[1][0][0],now,self.bounce_time)
# print(self.debounce[1][0][0] > now - self.bounce_time)
while self.debounce[1] and self.debounce[1][0][0] > now - self.bounce_time:
self.debounce[1].pop(0)
while self.debounce[0] and self.debounce[0][0] < now - self.bounce_time:
self.debounce[0].pop(0)
self.debounce[0].append(now)
self.thr = Thread(target=self._pred).start()
return ret,0.9
def my_predictor(self,im):
# im = cv2.imread(file)
hsv = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
s = hsv[:,:,1]
# print(mask)
mask = s>60
tot = mask.shape[0]*mask.shape[1]
val = np.sum(mask)
rate = val/tot
if rate < 0.01:
return "transport"
elif rate <0.2:
return "middle"
else:
return "colored"
def __del__(self):
self.pump_ser.close()
self.cap.release()
cv2.destroyAllWindows()
print("Experiment finished.")
def save_img(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return
cv2.imshow("new",im)
name = f"Imgs/{self.formatted_time}_{self.total_volume}.jpg"
if not cv2.imwrite(name,im):
print("Failed to save image",name)
def run(self,quick_speed = 0.2, mid_speed=0.1,slow_speed = 0.05,expect:float|int = 5, end_kind = 'orange'):
self.running = True
self.typ = 0
self.end_kind = end_kind
self.last = [time.time(),0]
self.debounce = [[],[]]
self.thr = Thread(target=self._pred)
self.thr.start()
switching_point = expect * 0.9
while self.running:
if self.now_volume <= 0:
self.start_move_1() # 抽取12ml
self.now_volume += 12
if self.typ == 0: # 每次加0.2ml
speed = quick_speed
self.start_move_2(speed)
self.total_volume += speed
self.now_volume -= speed
else:
speed = slow_speed
self.start_move_2(speed) # 每次加0.05ml
self.total_volume += speed
self.now_volume -= speed
time.sleep(1)
self.total_volume = round(self.total_volume, 3)
self.volume_list.append(self.total_volume)
self.save_img()
cv2.waitKey(1)
print(f"Current Total Volume: {self.total_volume} ml")
self.save_img()
print('----->>Visual Endpoint<<-----')
print(f"Total Volume: {self.total_volume} ml")
# print(f"Image File: {im_file}")
print("Volume List:", self.volume_list)
print("Color List:", self.color_list)
if __name__ == "__main__":
import warnings
# 忽略所有警告
warnings.filterwarnings('ignore')
# 创建MAT类的实例并运行
mat = MAT(
videoSourceIndex = 1,
weights_path = "resnet34-1Net.pth",
json_path = 'class_indices.json',
classes = 2,
bounce_time=0.2
)
# exit()
mat.run(
quick_speed = 0.15,
slow_speed = 0.05,
expect = 10,
end_kind = 'colored',
)