Files
ai-titration/Auto_Ctrl/predictor_Syringe_Pump.py
flt6 eed3f00ae1 Merge branch 'master' into transport
Former-commit-id: 8a0e3cae8b38d79badc1c6bc8184bc2c689454a5
2025-05-18 11:37:15 +08:00

323 lines
11 KiB
Python

import torch
from PIL import Image
import torchvision.transforms as transforms
import cv2
import time
import os
from model import resnet34
import serial
from datetime import datetime
import numpy as np
import joblib
import json
import Find_COM
from threading import Thread
import atexit
LOCAL_DEBUG = False
if LOCAL_DEBUG:
print("WARNING: Local debug mode is enabled. Serial communication will be skipped.")
time.sleep(2)
class MAT:
def __init__(self, videoSourceIndex=0, weights_path = "resnet34-1Net.pth", json_path = 'class_indices.json', classes = 2,bounce_time=1):
print('实验初始化中')
self.data_root = os.getcwd()
self.videoSourceIndex = videoSourceIndex # 摄像机编号
self.cap = cv2.VideoCapture(videoSourceIndex, cv2.CAP_DSHOW) # 打开摄像头
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if not LOCAL_DEBUG:
self.port = Find_COM.list_ch340_ports()[0] # 串口名
self.pump_ser = serial.Serial(self.port, 9600) # 初始化串口
self.classes = classes
self.bounce_time = bounce_time # 防抖时间
self.total_volume = 0 # 记录总体积
self.now_volume = 0 # 记录当前注射泵内体积
self.volume_list = [] # 记录体积变化
self.color_list = [] # 记录颜色变化
self.start_time = time.time() # 记录实验开始时间
self.weights_path = os.path.join(self.data_root, weights_path) # 权重文件路径
self.json_path = os.path.join(self.data_root, json_path) # 类别文件路径
# 将开始时间转化为年月日时分秒的格式,后续文件命名都已此命名
self.formatted_time = datetime.fromtimestamp(self.start_time).strftime('%Y%m%d_%H%M%S')
self.model = joblib.load("model.pkl")
atexit.register(self.start_move_3)
print("实验开始于", self.formatted_time)
def start_move_1(self): # 抽料程序
if LOCAL_DEBUG:return
self.start_move_init()
data = b"q1h40d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q2h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h9d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q6h3d"
self.pump_ser.write(data)
time.sleep(9)
print('完成抽取')
def start_move_init(self): # init
if LOCAL_DEBUG:return
data = b"q1h15d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q2h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h2d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q6h2d"
self.pump_ser.write(data)
print("send1")
time.sleep(2)
data = b"q1h20d" # *2
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h1d"
self.pump_ser.write(data)
time.sleep(0.1)
data = b"q6h3d"
self.pump_ser.write(data)
print("send2")
time.sleep(1)
print('INITED')
def start_move_2(self, speed=0.1): # 进料程序
if LOCAL_DEBUG:
time.sleep(1)
return
# 计算单次滴定体积并传输至控制器
speed_min = speed * 30
speed_min_int = int(speed_min)
speed_min_float = int((speed_min - speed_min_int) * 100)
# print(speed_min_int, speed_min_float)
data = f"q1h{speed_min_int}d"
self.pump_ser.write(data.encode('ascii'))
time.sleep(0.01)
data = f"q2h{speed_min_float}d"
self.pump_ser.write(data.encode('ascii'))
time.sleep(0.01)
data = b"q4h0d"
self.pump_ser.write(data)
time.sleep(0.01)
data = b"q5h1d"
self.pump_ser.write(data)
time.sleep(0.01)
# 进料
data = b"q6h2d"
self.pump_ser.write(data)
time.sleep(1)
def start_move_3(self): # 进料急停
if LOCAL_DEBUG:return
data = b"q6h6d"
self.pump_ser.write(data)
def preproc(self, im):
try:
hsv = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
mask = hsv[:,:,1] > 150
mask = mask[:,:,np.newaxis]
cnt = np.count_nonzero(mask)
if cnt == 0:
return 0,0,0
hsv*=mask
h = round(np.sum(hsv[:,:,0])/cnt)
s = round(np.sum(hsv[:,:,1])/cnt)
v = round(np.sum(hsv[:,:,2])/cnt)
return h,s,v
except Exception as e :
import traceback
traceback.print_exc()
return None
# name = f"{cl}_{h}_{s}_{v}.jpg"
def _pred(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return None
ret = self.my_predictor(im)
# print(ret)
if ret is None:
print("Fallback")
self.thr = Thread(target=self._pred).start()
else:
# fps
now = time.time()
if now - self.last[0] > 1:
print("FPS: ",self.last[1])
print(ret)
self.last[0] = now
self.last[1] = 0
else:
self.last[1] += 1
# fps end
now = time.time()
if ret == self.end_kind:
if self.debounce[0]:
if self.debounce[1] and self.debounce[0]:
# print(self.debounce)
if now-self.debounce[0][-1] > self.bounce_time:
print("Bounce check succeeded, val:",self.debounce[1][0])
self.running = False
self.start_move_3()
return
else:
print("Got stop flag, bounce check start, val:",self.total_volume)
self.debounce[1].append((time.time(),self.total_volume))
else:
if self.debounce[0]:
# print(self.debounce)
if self.debounce[1]:
# print(self.debounce[1][0][0],now,self.bounce_time)
# print(self.debounce[1][0][0] > now - self.bounce_time)
while self.debounce[1] and self.debounce[1][0][0] > now - self.bounce_time:
self.debounce[1].pop(0)
while self.debounce[0] and self.debounce[0][0] < now - self.bounce_time:
self.debounce[0].pop(0)
self.debounce[0].append(now)
self.thr = Thread(target=self._pred).start()
return ret,0.9
def my_predictor(self,im):
# im = cv2.imread(file)
hsv = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
s = hsv[:,:,1]
mask = s>100
# print(mask)
tot = mask.shape[0]*mask.shape[1]
val = np.sum(mask)
# print(val/tot)
if val<tot*0.3:
return "transport"
else:
return "colored"
def predictor(self, im_file): # 预测分类
image = Image.open(im_file)
data_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img = data_transform(image)
img = torch.unsqueeze(img, dim=0)
with open(self.json_path, "r") as f:
class_indict = json.load(f)
model = resnet34(num_classes=self.classes).to(self.device)
assert os.path.exists(self.weights_path), "file: '{}' dose not exist.".format(self.weights_path)
model.load_state_dict(torch.load(self.weights_path, map_location=self.device))
model.eval()
with torch.no_grad():
output = torch.squeeze(model(img.to(self.device))).cpu()
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
class_a = "{}".format(class_indict[str(predict_cla)])
prob_a = "{:.3}".format(predict[predict_cla].numpy())
prob_b = float(prob_a)
print('class_:',class_a)
print('prob_:',prob_b)
return class_a, prob_b
def __del__(self):
self.pump_ser.close()
self.cap.release()
cv2.destroyAllWindows()
print("Experiment finished.")
def save_img(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return
cv2.imshow("new",im)
name = f"Imgs/{self.formatted_time}_{self.total_volume}.jpg"
if not cv2.imwrite(name,im):
print("Failed to save image",name)
def run(self,quick_speed = 0.2, mid_speed=0.1,slow_speed = 0.05,expect:float|int = 5, end_kind = 'orange'):
self.running = True
self.end_kind = end_kind
self.last = [time.time(),0]
self.debounce = [[],[]]
self.thr = Thread(target=self._pred)
self.thr.start()
switching_point = expect * 0.9
while self.running:
if self.now_volume <= 0:
self.start_move_1() # 抽取12ml
self.now_volume += 12
if self.total_volume < switching_point: # 每次加0.2ml
speed = quick_speed
self.start_move_2(speed)
self.total_volume += speed
self.now_volume -= speed
else:
speed = slow_speed
self.start_move_2(speed) # 每次加0.05ml
self.total_volume += speed
self.now_volume -= speed
self.total_volume = round(self.total_volume, 3)
self.volume_list.append(self.total_volume)
self.save_img()
cv2.waitKey(1)
print(f"Current Total Volume: {self.total_volume} ml")
self.save_img()
print('----->>Visual Endpoint<<-----')
print(f"Total Volume: {self.total_volume} ml")
# print(f"Image File: {im_file}")
print("Volume List:", self.volume_list)
print("Color List:", self.color_list)
if __name__ == "__main__":
import warnings
# 忽略所有警告
warnings.filterwarnings('ignore')
# 创建MAT类的实例并运行
mat = MAT(
videoSourceIndex = 1,
weights_path = "resnet34-1Net.pth",
json_path = 'class_indices.json',
classes = 2,
bounce_time=1
)
# exit()
mat.run(
quick_speed = 0.3,
slow_speed = 0.2,
expect = 10,
end_kind = 'colored',
)