68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
import os
|
|
from shutil import copy, rmtree
|
|
import random
|
|
|
|
|
|
def mk_file(file_path: str):
|
|
if os.path.exists(file_path):
|
|
# 如果文件夹存在,则先删除原文件夹在重新创建
|
|
rmtree(file_path)
|
|
os.makedirs(file_path)
|
|
|
|
|
|
def main():
|
|
# 保证随机可复现
|
|
random.seed(0)
|
|
|
|
# 将数据集中10%的数据划分到验证集中
|
|
split_rate = 0.1
|
|
|
|
# 指向你解压后photos文件夹
|
|
cwd = os.getcwd() # 获取你的脚本路径
|
|
data_root = os.path.join(cwd, "data") # 分完的图片保存路径
|
|
origin_flower_path = os.path.join(cwd, "data_new") # 原图片路径
|
|
assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)
|
|
|
|
flower_class = [cla for cla in os.listdir(origin_flower_path)
|
|
if os.path.isdir(os.path.join(origin_flower_path, cla))]
|
|
|
|
# 建立保存训练集的文件夹
|
|
train_root = os.path.join(data_root, "train")
|
|
mk_file(train_root)
|
|
for cla in flower_class:
|
|
# 建立每个类别对应的文件夹
|
|
mk_file(os.path.join(train_root, cla))
|
|
|
|
# 建立保存验证集的文件夹
|
|
val_root = os.path.join(data_root, "val")
|
|
mk_file(val_root)
|
|
for cla in flower_class:
|
|
# 建立每个类别对应的文件夹
|
|
mk_file(os.path.join(val_root, cla))
|
|
|
|
for cla in flower_class:
|
|
cla_path = os.path.join(origin_flower_path, cla)
|
|
images = os.listdir(cla_path)
|
|
num = len(images)
|
|
# 随机采样验证集的索引
|
|
eval_index = random.sample(images, k=int(num*split_rate))
|
|
for index, image in enumerate(images):
|
|
if image in eval_index:
|
|
# 将分配至验证集中的文件复制到相应目录
|
|
image_path = os.path.join(cla_path, image)
|
|
new_path = os.path.join(val_root, cla)
|
|
copy(image_path, new_path)
|
|
else:
|
|
# 将分配至训练集中的文件复制到相应目录
|
|
image_path = os.path.join(cla_path, image)
|
|
new_path = os.path.join(train_root, cla)
|
|
copy(image_path, new_path)
|
|
print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="") # processing bar
|
|
print()
|
|
|
|
print("processing done!")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|