199 lines
7.1 KiB
Python
199 lines
7.1 KiB
Python
import torch.nn as nn
|
||
import torch
|
||
|
||
|
||
class BasicBlock(nn.Module):
|
||
expansion = 1
|
||
|
||
def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
|
||
super(BasicBlock, self).__init__()
|
||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
|
||
kernel_size=3, stride=stride, padding=1, bias=False)
|
||
self.bn1 = nn.BatchNorm2d(out_channel)
|
||
self.relu = nn.ReLU()
|
||
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
|
||
kernel_size=3, stride=1, padding=1, bias=False)
|
||
self.bn2 = nn.BatchNorm2d(out_channel)
|
||
self.downsample = downsample
|
||
|
||
def forward(self, x):
|
||
identity = x
|
||
if self.downsample is not None:
|
||
identity = self.downsample(x)
|
||
|
||
out = self.conv1(x)
|
||
out = self.bn1(out)
|
||
out = self.relu(out)
|
||
|
||
out = self.conv2(out)
|
||
out = self.bn2(out)
|
||
|
||
out += identity
|
||
out = self.relu(out)
|
||
|
||
return out
|
||
|
||
|
||
class Bottleneck(nn.Module):
|
||
"""
|
||
注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
|
||
但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
|
||
这么做的好处是能够在top1上提升大概0.5%的准确率。
|
||
可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
|
||
"""
|
||
expansion = 4
|
||
|
||
def __init__(self, in_channel, out_channel, stride=1, downsample=None,
|
||
groups=1, width_per_group=64):
|
||
super(Bottleneck, self).__init__()
|
||
|
||
width = int(out_channel * (width_per_group / 64.)) * groups
|
||
|
||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
|
||
kernel_size=1, stride=1, bias=False) # squeeze channels
|
||
self.bn1 = nn.BatchNorm2d(width)
|
||
# -----------------------------------------
|
||
self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
|
||
kernel_size=3, stride=stride, bias=False, padding=1)
|
||
self.bn2 = nn.BatchNorm2d(width)
|
||
# -----------------------------------------
|
||
self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
|
||
kernel_size=1, stride=1, bias=False) # unsqueeze channels
|
||
self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
|
||
self.relu = nn.ReLU(inplace=True)
|
||
self.downsample = downsample
|
||
|
||
def forward(self, x):
|
||
identity = x
|
||
if self.downsample is not None:
|
||
identity = self.downsample(x)
|
||
|
||
out = self.conv1(x)
|
||
out = self.bn1(out)
|
||
out = self.relu(out)
|
||
|
||
out = self.conv2(out)
|
||
out = self.bn2(out)
|
||
out = self.relu(out)
|
||
|
||
out = self.conv3(out)
|
||
out = self.bn3(out)
|
||
|
||
out += identity
|
||
out = self.relu(out)
|
||
|
||
return out
|
||
|
||
|
||
class ResNet(nn.Module):
|
||
|
||
def __init__(self,
|
||
block,
|
||
blocks_num,
|
||
num_classes=1000,
|
||
include_top=True,
|
||
groups=1,
|
||
width_per_group=64):
|
||
super(ResNet, self).__init__()
|
||
self.include_top = include_top
|
||
self.in_channel = 64
|
||
|
||
self.groups = groups
|
||
self.width_per_group = width_per_group
|
||
|
||
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
|
||
padding=3, bias=False)
|
||
self.bn1 = nn.BatchNorm2d(self.in_channel)
|
||
self.relu = nn.ReLU(inplace=True)
|
||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||
self.layer1 = self._make_layer(block, 64, blocks_num[0])
|
||
self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
|
||
self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
|
||
self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
|
||
if self.include_top:
|
||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1)
|
||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||
|
||
for m in self.modules():
|
||
if isinstance(m, nn.Conv2d):
|
||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||
|
||
def _make_layer(self, block, channel, block_num, stride=1):
|
||
downsample = None
|
||
if stride != 1 or self.in_channel != channel * block.expansion:
|
||
downsample = nn.Sequential(
|
||
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
|
||
nn.BatchNorm2d(channel * block.expansion))
|
||
|
||
layers = []
|
||
layers.append(block(self.in_channel,
|
||
channel,
|
||
downsample=downsample,
|
||
stride=stride,
|
||
groups=self.groups,
|
||
width_per_group=self.width_per_group))
|
||
self.in_channel = channel * block.expansion
|
||
|
||
for _ in range(1, block_num):
|
||
layers.append(block(self.in_channel,
|
||
channel,
|
||
groups=self.groups,
|
||
width_per_group=self.width_per_group))
|
||
|
||
return nn.Sequential(*layers)
|
||
|
||
def forward(self, x):
|
||
x = self.conv1(x)
|
||
x = self.bn1(x)
|
||
x = self.relu(x)
|
||
x = self.maxpool(x)
|
||
|
||
x = self.layer1(x)
|
||
x = self.layer2(x)
|
||
x = self.layer3(x)
|
||
x = self.layer4(x)
|
||
|
||
if self.include_top:
|
||
x = self.avgpool(x)
|
||
x = torch.flatten(x, 1)
|
||
x = self.fc(x)
|
||
|
||
return x
|
||
|
||
|
||
def resnet34(num_classes=1000, include_top=True):
|
||
# https://download.pytorch.org/models/resnet34-333f7ec4.pth
|
||
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
|
||
|
||
|
||
def resnet50(num_classes=1000, include_top=True):
|
||
# https://download.pytorch.org/models/resnet50-19c8e357.pth
|
||
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
|
||
|
||
|
||
def resnet101(num_classes=1000, include_top=True):
|
||
# https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
|
||
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
|
||
|
||
|
||
def resnext50_32x4d(num_classes=1000, include_top=True):
|
||
# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
|
||
groups = 32
|
||
width_per_group = 4
|
||
return ResNet(Bottleneck, [3, 4, 6, 3],
|
||
num_classes=num_classes,
|
||
include_top=include_top,
|
||
groups=groups,
|
||
width_per_group=width_per_group)
|
||
|
||
|
||
def resnext101_32x8d(num_classes=1000, include_top=True):
|
||
# https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
|
||
groups = 32
|
||
width_per_group = 8
|
||
return ResNet(Bottleneck, [3, 4, 23, 3],
|
||
num_classes=num_classes,
|
||
include_top=include_top,
|
||
groups=groups,
|
||
width_per_group=width_per_group)
|