hsv_1
Former-commit-id: 57a8fb7799ea7543b4af1ea49626346d50546f82
This commit is contained in:
118
Picture_Train/train_2.py
Normal file
118
Picture_Train/train_2.py
Normal file
@ -0,0 +1,118 @@
|
||||
|
||||
import numpy as np
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from typing import Dict, List, Tuple
|
||||
import joblib
|
||||
|
||||
def prepare_data(data: Dict[str, List[np.ndarray]]) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
将dict[str, list[ndarray]]格式的数据转换为模型可用的特征矩阵和标签向量
|
||||
|
||||
参数:
|
||||
data: 格式为 dict[str, list[ndarray]] 的数据,其中键为类别名,值为对应类别的特征数组列表
|
||||
|
||||
返回:
|
||||
X: 特征矩阵
|
||||
y: 标签向量
|
||||
"""
|
||||
features = []
|
||||
labels = []
|
||||
|
||||
# 为每个类别分配一个数字标签
|
||||
label_map = {class_name: i for i, class_name in enumerate(data.keys())}
|
||||
|
||||
for class_name, arrays_list in data.items():
|
||||
label = label_map[class_name]
|
||||
for arr in arrays_list:
|
||||
# 处理每个数组中的每个样本
|
||||
features.append(np.array(arr))
|
||||
labels.append(label)
|
||||
# if len(arr.shape) > 1:
|
||||
# for sample in arr:
|
||||
# features.append(sample)
|
||||
# labels.append(label)
|
||||
# else:
|
||||
# # 处理单个样本的情况
|
||||
# features.append(arr)
|
||||
# labels.append(label)
|
||||
|
||||
return np.array(features), np.array(labels)
|
||||
|
||||
def train_model(data: Dict[str, List[np.ndarray]]):
|
||||
"""
|
||||
训练分类模型
|
||||
|
||||
参数:
|
||||
data: 训练数据,格式为 dict[str, list[ndarray]]
|
||||
|
||||
返回:
|
||||
训练好的模型和标签映射字典
|
||||
"""
|
||||
X, y = prepare_data(data)
|
||||
|
||||
# 创建并训练模型
|
||||
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
||||
model.fit(X, y)
|
||||
|
||||
# 创建逆向映射,用于将数字标签转回类别名
|
||||
label_map = {i: class_name for i, class_name in enumerate(data.keys())}
|
||||
|
||||
return model, label_map
|
||||
|
||||
def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarray]]) -> Dict[str, List[List[str]]]:
|
||||
"""
|
||||
使用训练好的模型对验证数据进行预测
|
||||
|
||||
参数:
|
||||
model: 训练好的模型
|
||||
label_map: 标签映射字典,用于将数字标签转换回类别名
|
||||
val_data: 验证数据,格式为 dict[str, list[ndarray]]
|
||||
|
||||
返回:
|
||||
预测结果字典,格式为 dict[str, list[list[str]]],表示每个输入数组中样本的预测类别
|
||||
"""
|
||||
results = {}
|
||||
|
||||
suc = 0
|
||||
cnt = 0
|
||||
for class_name, arrays_list in val_data.items():
|
||||
class_predictions = []
|
||||
for arr in arrays_list:
|
||||
# 确保数据格式正确
|
||||
arr = np.array(arr)
|
||||
cnt+=1
|
||||
if len(arr.shape) == 1:
|
||||
arr = arr.reshape(1, -1)
|
||||
|
||||
# 进行预测并转换为类别名
|
||||
pred_labels = model.predict(arr)
|
||||
pred_classes = [label_map[label] for label in pred_labels]
|
||||
if len(pred_classes) > 1:continue
|
||||
if class_name==pred_classes[0]:
|
||||
suc+=1
|
||||
# class_predictions.append(pred_classes)
|
||||
|
||||
results[class_name] = class_predictions
|
||||
|
||||
return suc/cnt
|
||||
|
||||
if __name__ == "__main__":
|
||||
exit()
|
||||
# 训练模型
|
||||
model, label_map = train_model(d)
|
||||
print("训练完成")
|
||||
joblib.dump(model, "model.pkl")
|
||||
|
||||
# 在验证数据上进行预测
|
||||
# predictions = predict(model, label_map, val)
|
||||
|
||||
# 输出预测结果
|
||||
# print("预测结果:")
|
||||
# for class_name, class_preds in predictions.items():
|
||||
# print(f"{class_name}:")
|
||||
# for i, arr_preds in enumerate(class_preds):
|
||||
# print(f" 数组 {i}: {arr_preds}")
|
||||
|
||||
# 输出模型性能评估
|
||||
# X_train, y_train = prepare_data(val)
|
||||
# print(f"\n训练集准确率: {model.score(X_train, y_train):.4f}")
|
Reference in New Issue
Block a user