Former-commit-id: 57a8fb7799ea7543b4af1ea49626346d50546f82
This commit is contained in:
2025-05-16 15:46:34 +08:00
parent a1a0392104
commit a6b9531df5
6 changed files with 215 additions and 13 deletions

118
Picture_Train/train_2.py Normal file
View File

@ -0,0 +1,118 @@
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from typing import Dict, List, Tuple
import joblib
def prepare_data(data: Dict[str, List[np.ndarray]]) -> Tuple[np.ndarray, np.ndarray]:
"""
将dict[str, list[ndarray]]格式的数据转换为模型可用的特征矩阵和标签向量
参数:
data: 格式为 dict[str, list[ndarray]] 的数据,其中键为类别名,值为对应类别的特征数组列表
返回:
X: 特征矩阵
y: 标签向量
"""
features = []
labels = []
# 为每个类别分配一个数字标签
label_map = {class_name: i for i, class_name in enumerate(data.keys())}
for class_name, arrays_list in data.items():
label = label_map[class_name]
for arr in arrays_list:
# 处理每个数组中的每个样本
features.append(np.array(arr))
labels.append(label)
# if len(arr.shape) > 1:
# for sample in arr:
# features.append(sample)
# labels.append(label)
# else:
# # 处理单个样本的情况
# features.append(arr)
# labels.append(label)
return np.array(features), np.array(labels)
def train_model(data: Dict[str, List[np.ndarray]]):
"""
训练分类模型
参数:
data: 训练数据,格式为 dict[str, list[ndarray]]
返回:
训练好的模型和标签映射字典
"""
X, y = prepare_data(data)
# 创建并训练模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X, y)
# 创建逆向映射,用于将数字标签转回类别名
label_map = {i: class_name for i, class_name in enumerate(data.keys())}
return model, label_map
def predict(model, label_map: Dict[int, str], val_data: Dict[str, List[np.ndarray]]) -> Dict[str, List[List[str]]]:
"""
使用训练好的模型对验证数据进行预测
参数:
model: 训练好的模型
label_map: 标签映射字典,用于将数字标签转换回类别名
val_data: 验证数据,格式为 dict[str, list[ndarray]]
返回:
预测结果字典,格式为 dict[str, list[list[str]]],表示每个输入数组中样本的预测类别
"""
results = {}
suc = 0
cnt = 0
for class_name, arrays_list in val_data.items():
class_predictions = []
for arr in arrays_list:
# 确保数据格式正确
arr = np.array(arr)
cnt+=1
if len(arr.shape) == 1:
arr = arr.reshape(1, -1)
# 进行预测并转换为类别名
pred_labels = model.predict(arr)
pred_classes = [label_map[label] for label in pred_labels]
if len(pred_classes) > 1:continue
if class_name==pred_classes[0]:
suc+=1
# class_predictions.append(pred_classes)
results[class_name] = class_predictions
return suc/cnt
if __name__ == "__main__":
exit()
# 训练模型
model, label_map = train_model(d)
print("训练完成")
joblib.dump(model, "model.pkl")
# 在验证数据上进行预测
# predictions = predict(model, label_map, val)
# 输出预测结果
# print("预测结果:")
# for class_name, class_preds in predictions.items():
# print(f"{class_name}:")
# for i, arr_preds in enumerate(class_preds):
# print(f" 数组 {i}: {arr_preds}")
# 输出模型性能评估
# X_train, y_train = prepare_data(val)
# print(f"\n训练集准确率: {model.score(X_train, y_train):.4f}")