src
Former-commit-id: 43bc977a970a5bba09d0afa6f2a85169fe1ed253
This commit is contained in:
198
Picture_Train/resnet.py
Normal file
198
Picture_Train/resnet.py
Normal file
@ -0,0 +1,198 @@
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
|
||||
kernel_size=3, stride=stride, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(out_channel)
|
||||
self.relu = nn.ReLU()
|
||||
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
|
||||
kernel_size=3, stride=1, padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(out_channel)
|
||||
self.downsample = downsample
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
"""
|
||||
注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
|
||||
但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
|
||||
这么做的好处是能够在top1上提升大概0.5%的准确率。
|
||||
可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, in_channel, out_channel, stride=1, downsample=None,
|
||||
groups=1, width_per_group=64):
|
||||
super(Bottleneck, self).__init__()
|
||||
|
||||
width = int(out_channel * (width_per_group / 64.)) * groups
|
||||
|
||||
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
|
||||
kernel_size=1, stride=1, bias=False) # squeeze channels
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
# -----------------------------------------
|
||||
self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
|
||||
kernel_size=3, stride=stride, bias=False, padding=1)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
# -----------------------------------------
|
||||
self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
|
||||
kernel_size=1, stride=1, bias=False) # unsqueeze channels
|
||||
self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
blocks_num,
|
||||
num_classes=1000,
|
||||
include_top=True,
|
||||
groups=1,
|
||||
width_per_group=64):
|
||||
super(ResNet, self).__init__()
|
||||
self.include_top = include_top
|
||||
self.in_channel = 64
|
||||
|
||||
self.groups = groups
|
||||
self.width_per_group = width_per_group
|
||||
|
||||
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
|
||||
padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(self.in_channel)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, blocks_num[0])
|
||||
self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
|
||||
if self.include_top:
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1)
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
|
||||
def _make_layer(self, block, channel, block_num, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.in_channel != channel * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(channel * block.expansion))
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.in_channel,
|
||||
channel,
|
||||
downsample=downsample,
|
||||
stride=stride,
|
||||
groups=self.groups,
|
||||
width_per_group=self.width_per_group))
|
||||
self.in_channel = channel * block.expansion
|
||||
|
||||
for _ in range(1, block_num):
|
||||
layers.append(block(self.in_channel,
|
||||
channel,
|
||||
groups=self.groups,
|
||||
width_per_group=self.width_per_group))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
if self.include_top:
|
||||
x = self.avgpool(x)
|
||||
x = torch.flatten(x, 1)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def resnet34(num_classes=1000, include_top=True):
|
||||
# https://download.pytorch.org/models/resnet34-333f7ec4.pth
|
||||
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
|
||||
|
||||
|
||||
def resnet50(num_classes=1000, include_top=True):
|
||||
# https://download.pytorch.org/models/resnet50-19c8e357.pth
|
||||
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
|
||||
|
||||
|
||||
def resnet101(num_classes=1000, include_top=True):
|
||||
# https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
|
||||
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
|
||||
|
||||
|
||||
def resnext50_32x4d(num_classes=1000, include_top=True):
|
||||
# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
|
||||
groups = 32
|
||||
width_per_group = 4
|
||||
return ResNet(Bottleneck, [3, 4, 6, 3],
|
||||
num_classes=num_classes,
|
||||
include_top=include_top,
|
||||
groups=groups,
|
||||
width_per_group=width_per_group)
|
||||
|
||||
|
||||
def resnext101_32x8d(num_classes=1000, include_top=True):
|
||||
# https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
|
||||
groups = 32
|
||||
width_per_group = 8
|
||||
return ResNet(Bottleneck, [3, 4, 23, 3],
|
||||
num_classes=num_classes,
|
||||
include_top=include_top,
|
||||
groups=groups,
|
||||
width_per_group=width_per_group)
|
Reference in New Issue
Block a user