200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
from matplotlib import pyplot as plt
|
||
import pandas as pd
|
||
import numpy as np
|
||
import io
|
||
import streamlit as st
|
||
# import scienceplots
|
||
|
||
# plt.style.use(['nature', 'no-latex',"cjk-sc-font"])
|
||
plt.rcParams['font.family'] = 'sans-serif'
|
||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体
|
||
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
|
||
|
||
def cubic_bezier_with_zero_derivatives(p0, p1, t_array, influence_factor):
|
||
"""
|
||
创建三次贝塞尔曲线,确保起点和终点的导数为0
|
||
|
||
参数:
|
||
p0: 起点 [x0, y0]
|
||
p1: 终点 [x1, y1]
|
||
t_array: 参数数组 (0到1)
|
||
influence_factor: 影响因子,控制控制点的位置
|
||
|
||
返回:
|
||
x_array, y_array: 贝塞尔曲线上的点
|
||
"""
|
||
x0, y0 = p0
|
||
x1, y1 = p1
|
||
|
||
# 计算控制点,确保起点和终点导数为0
|
||
# 控制点位置基于影响因子和两点间距离
|
||
dx = x1 - x0
|
||
|
||
# 第一个控制点:在起点右侧,y坐标与起点相同(确保起点导数为0)
|
||
p1_control = [x0 + dx * influence_factor[0], y0]
|
||
|
||
# 第二个控制点:在终点左侧,y坐标与终点相同(确保终点导数为0)
|
||
p2_control = [x1 - dx * influence_factor[1], y1]
|
||
|
||
# 计算贝塞尔曲线
|
||
x_bezier = ((1-t_array)**3 * x0 +
|
||
3*(1-t_array)**2 * t_array * p1_control[0] +
|
||
3*(1-t_array) * t_array**2 * p2_control[0] +
|
||
t_array**3 * x1)
|
||
|
||
y_bezier = ((1-t_array)**3 * y0 +
|
||
3*(1-t_array)**2 * t_array * p1_control[1] +
|
||
3*(1-t_array) * t_array**2 * p2_control[1] +
|
||
t_array**3 * y1)
|
||
|
||
return x_bezier, y_bezier
|
||
|
||
# @st.cache_resource
|
||
def plot_reaction_coordinate(changed=None, _lines=None):
|
||
"""
|
||
绘制反应坐标图
|
||
"""
|
||
|
||
lines = []
|
||
fig,ax1 = plt.subplots(figsize=(9, 6))
|
||
|
||
last=(-1,-1)
|
||
|
||
|
||
maxy = data["Energy"].max()
|
||
miny = data["Energy"].min()
|
||
varyy = maxy - miny
|
||
|
||
for i in range(data.shape[0]):
|
||
line:pd.Series = data.loc[i]
|
||
if last == (-1,-1):
|
||
last = (1, line["Energy"])
|
||
if not pd.isna(line["Name"]):
|
||
ax1.annotate(str(line["Name"]), (1, line["Energy"]+varyy*K_POS[i]), ha='center')
|
||
else:
|
||
p1 = last[0]+2,line["Energy"]
|
||
x,y = cubic_bezier_with_zero_derivatives(last,p1, np.linspace(0, 1, 300), INFLU_FACTORS[(i*2-2):i*2])
|
||
l = ax1.plot(x, y, "-", color="black")[0]
|
||
lines.append(l)
|
||
if not pd.isna(line["Name"]):
|
||
p = p1[0],p1[1]+varyy*K_POS[i]
|
||
ax1.annotate(str(line["Name"]), p, ha='center')
|
||
last = p1
|
||
|
||
|
||
|
||
ax1.set_xlabel("Reaction Coordinate")
|
||
ax1.xaxis.set_ticks([])
|
||
ax1.set_ylabel("Energy (kcal/mol)")
|
||
ax1.set_ylim(miny-varyy*0.1, maxy+varyy*0.1)
|
||
return fig,lines
|
||
|
||
# 创建图形和坐标轴
|
||
|
||
def callback_gen(x,typ=0):
|
||
if typ:
|
||
def callback():
|
||
global K_POS
|
||
K_POS[x] = st.session_state.get(f'text_slider_{x}', 0.05)
|
||
plot_reaction_coordinate(changed=x, _lines=lines)
|
||
else:
|
||
def callback():
|
||
global INFLU_FACTORS
|
||
INFLU_FACTORS[x-1] = st.session_state.get(f'slider_{x}', 0.5)
|
||
plot_reaction_coordinate(changed=x, _lines=lines)
|
||
|
||
return callback
|
||
|
||
def on_save():
|
||
global out_file
|
||
# for slider in slides:
|
||
# slider.ax.set_visible(False)
|
||
plt.draw()
|
||
plt.tight_layout()
|
||
out_file = io.BytesIO()
|
||
fig.savefig(out_file, format=st.session_state.get("export_format", ".tiff")[1:], dpi=300, bbox_inches='tight')
|
||
out_file.seek(0)
|
||
return out_file.getvalue()
|
||
|
||
@st.cache_resource
|
||
def load_data(file):
|
||
# 读取数据文件
|
||
if file is not None:
|
||
try:
|
||
data = pd.read_excel(file) if file.name.endswith((".xlsx", ".xls")) else pd.read_csv(file)
|
||
except Exception as e:
|
||
st.error(f"Error reading file: {e}")
|
||
exit()
|
||
else:
|
||
exit()
|
||
|
||
INFLU_FACTORS = [0.5] * data.shape[0] * 2 # 动态创建数组
|
||
|
||
ene = data["Energy"].to_numpy()
|
||
K_POS = np.where(ene[1:]>ene[:1],0.03,-0.05)
|
||
K_POS = [-0.05] + K_POS.tolist()
|
||
st.info(K_POS)
|
||
|
||
data["Energy"] -= data["Energy"][0]
|
||
data["Energy"]*=627.509
|
||
|
||
return data, INFLU_FACTORS,K_POS
|
||
|
||
|
||
out_file = io.BytesIO()
|
||
st.set_page_config(
|
||
page_title="反应坐标绘制",
|
||
page_icon=":chart_with_upwards_trend:",
|
||
layout="wide",
|
||
initial_sidebar_state="expanded"
|
||
)
|
||
st.title("反应坐标绘制")
|
||
st.write("---")
|
||
col1,col2,col3 = st.columns([0.4,0.25,0.25],gap="medium")
|
||
|
||
with col1:
|
||
file = st.file_uploader("上传能量文件", type=["xlsx", "xls", "csv"])
|
||
data, INFLU_FACTORS,K_POS = load_data(file)
|
||
|
||
fig,lines = plot_reaction_coordinate()
|
||
stfig = st.pyplot(fig,False)
|
||
st.slider("字体大小",8,20, value=12, key="font_size",
|
||
on_change=lambda: plt.rcParams.update({'font.size': st.session_state.get("font_size", 12)}))
|
||
st.selectbox("导出文件拓展名",[".tiff",".pdf",".png",".pgf"],key="export_format")
|
||
st.download_button(
|
||
label="Download Plot",
|
||
data=on_save(),
|
||
file_name="reaction_coordinate"+st.session_state.get("export_format", ".tiff"),
|
||
# mime="image/tiff"
|
||
)
|
||
with col2:
|
||
st.write("调整滑块以改变反应坐标图曲线形状。")
|
||
for i in range(data.shape[0]):
|
||
if i!=0:
|
||
st.slider(
|
||
f'{data.loc[i,"Name"]} 左',
|
||
0.0, 1.0, value=INFLU_FACTORS[i*2-1],
|
||
key=f'slider_{i*2}',
|
||
on_change=callback_gen(i*2)
|
||
)
|
||
if i!= data.shape[0] - 1:
|
||
st.slider(
|
||
f'{data.loc[i,"Name"]} 右',
|
||
0.0, 1.0, value=INFLU_FACTORS[i*2],
|
||
key=f'slider_{i*2+1}',
|
||
on_change=callback_gen(i*2+1)
|
||
)
|
||
|
||
with col3:
|
||
st.write("调整参数以改变文字位置。")
|
||
for i in range(data.shape[0]):
|
||
st.slider(
|
||
f'{data.loc[i,"Name"]}',
|
||
-0.1, 0.1, value=K_POS[i],
|
||
key=f'text_slider_{i}',
|
||
on_change=callback_gen(i,1)
|
||
)
|
||
|
||
st.write("---")
|
||
st.dataframe(data)
|