Files
ai-titration/predictor_Syringe_Pump.py
flt6 90a54aae45 clean code and use ch340
Former-commit-id: 3e401751a24183eb1fa03df0a835624ed6ca6f9d
2025-05-26 19:43:02 +08:00

203 lines
6.9 KiB
Python

import torch
import cv2
import time
import os
import serial
from datetime import datetime
import numpy as np
import joblib
import ch340
from threading import Thread
import atexit
LOCAL_DEBUG = False
if LOCAL_DEBUG:
print("WARNING: Local debug mode is enabled. Serial communication will be skipped.")
time.sleep(2)
class MAT:
def __init__(self, videoSourceIndex=0, weights_path = "resnet34-1Net.pth", json_path = 'class_indices.json', classes = 2,bounce_time=1):
print('实验初始化中')
self.data_root = os.getcwd()
self.videoSourceIndex = videoSourceIndex # 摄像机编号
self.cap = cv2.VideoCapture(videoSourceIndex, cv2.CAP_DSHOW) # 打开摄像头
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.ch340 = ch340.CH340()
self.classes = classes
self.bounce_time = bounce_time # 防抖时间
self.total_volume = 0 # 记录总体积
self.now_volume = 0 # 记录当前注射泵内体积
self.volume_list = [] # 记录体积变化
self.color_list = [] # 记录颜色变化
self.start_time = time.time() # 记录实验开始时间
self.weights_path = os.path.join(self.data_root, weights_path) # 权重文件路径
self.json_path = os.path.join(self.data_root, json_path) # 类别文件路径
# 将开始时间转化为年月日时分秒的格式,后续文件命名都已此命名
self.formatted_time = datetime.fromtimestamp(self.start_time).strftime('%Y%m%d_%H%M%S')
atexit.register(self.start_move_3)
print("实验开始于", self.formatted_time)
def start_move_1(self): # 抽料程序
self.ch340.max_speed()
self.ch340.pull(vol=12)
print('完成抽取')
def start_move_init(self): # init
self.ch340.push(speed=1,t=1)
self.ch340.pull(speed=1.2,vol=3)
print('INITED')
def start_move_2(self, speed=0.1): # 进料程序
self.ch340.push(speed=speed, t=1)
def start_move_3(self): # 进料急停
self.ch340.stop()
def _pred(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return None
ret = self.my_predictor(im)
# print(ret)
if ret is None:
print("Fallback")
self.thr = Thread(target=self._pred).start()
else:
# fps
now = time.time()
if now - self.last[0] > 1:
print("FPS: ",self.last[1])
print(ret)
self.last[0] = now
self.last[1] = 0
else:
self.last[1] += 1
# fps end
now = time.time()
if ret == "middle":
if self.debounce[0] and self.typ == 0:
if self.debounce[1] and self.debounce[0]:
# print(self.debounce)
if now-self.debounce[0][-1] > self.bounce_time:
print("Bounce check succeeded, val:",self.debounce[1][0])
else:
print("Got middle flag, bounce check start, val:",self.total_volume)
self.typ = 1
self.start_move_3()
self.debounce[1].append((time.time(),self.total_volume))
elif ret == self.end_kind:
if self.debounce[1]:
print("Got stop flag, val:",self.total_volume)
self.running = False
self.start_move_3()
return
else:
if self.debounce[0]:
# print(self.debounce)
if self.debounce[1]:
# print(self.debounce[1][0][0],now,self.bounce_time)
# print(self.debounce[1][0][0] > now - self.bounce_time)
while self.debounce[1] and self.debounce[1][0][0] > now - self.bounce_time:
self.debounce[1].pop(0)
while self.debounce[0] and self.debounce[0][0] < now - self.bounce_time:
self.debounce[0].pop(0)
self.debounce[0].append(now)
self.thr = Thread(target=self._pred).start()
return ret,0.9
def my_predictor(self,im):
# im = cv2.imread(file)
hsv = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
s = hsv[:,:,1]
# print(mask)
mask = s>60
tot = mask.shape[0]*mask.shape[1]
val = np.sum(mask)
rate = val/tot
if rate < 0.01:
return "transport"
elif rate <0.2:
return "middle"
else:
return "colored"
def __del__(self):
self.cap.release()
cv2.destroyAllWindows()
print("Experiment finished.")
def save_img(self):
suc,im = self.cap.read()
if not suc:
print("Failed to capture frame from camera.")
return
cv2.imshow("new",im)
name = f"Imgs/{self.formatted_time}_{self.total_volume}.jpg"
if not cv2.imwrite(name,im):
print("Failed to save image",name)
def run(self,quick_speed = 0.2, mid_speed=0.1,slow_speed = 0.05,expect:float|int = 5, end_kind = 'orange'):
self.running = True
self.typ = 0
self.end_kind = end_kind
self.last = [time.time(),0]
self.debounce = [[],[]]
self.thr = Thread(target=self._pred)
self.thr.start()
while self.running:
if self.now_volume <= 0:
self.start_move_1() # 抽取12ml
self.now_volume += 12
if self.typ == 0: # 每次加0.2ml
speed = quick_speed
self.start_move_2(speed)
self.total_volume += speed
self.now_volume -= speed
else:
speed = slow_speed
self.start_move_2(speed) # 每次加0.05ml
self.total_volume += speed
self.now_volume -= speed
time.sleep(1)
self.total_volume = round(self.total_volume, 3)
self.volume_list.append(self.total_volume)
self.save_img()
cv2.waitKey(1)
print(f"Current Total Volume: {self.total_volume} ml")
self.save_img()
print('----->>Visual Endpoint<<-----')
print(f"Total Volume: {self.total_volume} ml")
print("Volume List:", self.volume_list)
print("Color List:", self.color_list)
if __name__ == "__main__":
# 创建MAT类的实例并运行
mat = MAT(
videoSourceIndex = 1,
weights_path = "resnet34-1Net.pth",
json_path = 'class_indices.json',
classes = 2,
bounce_time=0.2
)
# exit()
mat.run(
quick_speed = 0.15,
slow_speed = 0.05,
expect = 10,
end_kind = 'colored',
)